Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment

نویسندگان

  • Valerie P.I. Vidal
  • Marie-Christine Chaboissier
  • Susanne Lützkendorf
  • George Cotsarelis
  • Pleasantine Mill
  • Chi-Chung Hui
  • Nicolas Ortonne
  • Jean-Paul Ortonne
  • Andreas Schedl
چکیده

BACKGROUND The mammalian hair represents an unparalleled model system to understand both developmental processes and stem cell biology. The hair follicle consists of several concentric epithelial sheaths with the outer root sheath (ORS) forming the outermost layer. Functionally, the ORS has been implicated in the migration of hair stem cells from the stem cell niche toward the hair bulb. However, factors required for the differentiation of this critical cell lineage remain to be identified. Here, we describe an unexpected role of the HMG-box-containing gene Sox9 in hair development. RESULTS Sox9 expression can be first detected in the epithelial component of the hair placode but then becomes restricted to the outer root sheath (ORS) and the hair stem cell compartment (bulge). Using tissue-specific inactivation of Sox9, we demonstrate that this gene serves a crucial role in hair differentiation and that skin deleted for Sox9 lacks external hair. Strikingly, the ORS acquires epidermal characteristics with ectopic expression of GATA3. Moreover, Sox9 knock hair show severe proliferative defects and the stem cell niche never forms. Finally, we show that Sox9 expression depends on sonic hedgehog (Shh) signaling and demonstrate overexpression in skin tumors in mouse and man. CONCLUSIONS We conclude that although Sox9 is dispensable for hair induction, it directs differentiation of the ORS and is required for the formation of the hair stem cell compartment. Our genetic analysis places Sox9 in a molecular cascade downstream of sonic hedgehog and suggests that this gene is involved in basal cell carcinoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سلول‌های بنیادی bulge فولیکول مو: منبعی جدید برای بازسازی پوست

Emergence and spread of various diseases in the past century have been associated with many problems for the health care providers. Now a days, with advancement of technology, new methods such as cell therapy, are available, efficient and successful in some clinical areas. To use any cell, it is necessary to identify its source, so herein, we reviewed the literature of a new source of adult ste...

متن کامل

SOX9: a stem cell transcriptional regulator of secreted niche signaling factors.

Hair follicles (HFs) undergo cyclical periods of growth, which are fueled by stem cells (SCs) at the base of the resting follicle. HF-SC formation occurs during HF development and requires transcription factor SOX9. Whether and how SOX9 functions in HF-SC maintenance remain unknown. By conditionally targeting Sox9 in adult HF-SCs, we show that SOX9 is essential for maintaining them. SOX9-defici...

متن کامل

Non-cultured autologous melanocytes of outer root sheath and bulge area transplantation for repigmentation of the stable generalized vitiligo patches: a pilot study

Background: Different modalities have been tried in order totreat stable vitiligo. Culturing melanocytes is time consumingand expensive. Therefore, new methods using autologousmelanocytes are sought. We aimed to compare the mixed nonculturedautologous melanocytes of the outer root sheath andthe bulge area of hair follicle transplantation plus dermabrasionwith dermabrasion alone in stable genera...

متن کامل

Neuronal Differentiation of Rat Hair Follicle Stem Cells: the Involvement of the Neuroprotective Factor Seladin-1 (DHCR24)

Background: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate...

متن کامل

Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment.

Activation of Myc (c-Myc) causes epidermal cells to exit the stem cell compartment and differentiate into sebocytes and interfollicular epidermis at the expense of the hair lineages. To investigate how Myc exerts these effects we analysed the transcription of more than 10000 genes following Myc activation in the basal layer of mouse epidermis for 1 or 4 days. The major classes of induced genes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005